Structural Basis for the dsRNA Specificity of the Lassa Virus NP Exonuclease
نویسندگان
چکیده
Lassa virus causes hemorrhagic fever characterized by immunosuppression. The nucleoprotein of Lassa virus, termed NP, binds the viral genome. It also has an additional enzymatic activity as an exonuclease that specifically digests double-stranded RNA (dsRNA). dsRNA is a strong signal to the innate immune system of viral infection. Digestion of dsRNA by the NP exonuclease activity appears to cause suppression of innate immune signaling in the infected cell. Although the fold of the NP enzyme is conserved and the active site completely conserved with other exonucleases in its DEDDh family, NP is atypical among exonucleases in its preference for dsRNA and its strict specificity for one substrate. Here, we present the crystal structure of Lassa virus NP in complex with dsRNA. We find that unlike the exonuclease in Klenow fragment, the double-stranded nucleic acid in complex with Lassa NP remains base-paired instead of splitting, and that binding of the paired complementary strand is achieved by "relocation" of a basic loop motif from its typical exonuclease position. Further, we find that just one single glycine that contacts the substrate strand and one single tyrosine that stacks with a base of the complementary, non-substrate strand are responsible for the unique substrate specificity. This work thus provides templates for development of antiviral drugs that would be specific for viral, rather than host exonucleases of similar fold and active site, and illustrates how a very few amino acid changes confer alternate specificity and biological phenotype to an enzyme.
منابع مشابه
Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression.
Lassa fever virus, a member of the family Arenaviridae, is a highly endemic category A pathogen that causes 300,000-500,000 infections per year in Western Africa. The arenaviral nucleoprotein NP has been implicated in suppression of the host innate immune system, but the mechanism by which this occurs has remained elusive. Here we present the crystal structure at 1.5 Å of the immunosuppressive ...
متن کاملExonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response.
Lassa virus (LASV), which causes a viral hemorrhagic fever, inhibits the innate immune response. The exonuclease (ExoN) domain of its nucleoprotein (NP) is implicated in the suppression of retinoic acid-inducible gene I (RIG-I) signaling. We show here that a LASV in which ExoN function has been abolished strongly activates innate immunity and that this effect is dependent on RIG-I signaling. Th...
متن کاملLassa virus nucleoprotein mutants generated by reverse genetics induce a robust type I interferon response in human dendritic cells and macrophages.
Lassa virus (LASV; Arenaviridae) is responsible for severe hemorrhagic fevers in Africa. LASV nucleoprotein (NP) plays important roles in regulating viral transcription and replication and in inhibiting type I interferon (IFN) production. The NP C-terminal domain contains a 3'-to-5' exonuclease activity involved in suppressing IFN induction. We have established a murine polymerase (Pol) I rever...
متن کاملUniquely conserved immunosuppressive viral exoribonucleases
The interplay between viruses and host immune responses is critical to determine either a successful infection or resolution. Mammalian cells have developed different mechanisms to recognize invading pathogens via their pathogen-associated molecular patterns (PAMPs), which are often nucleic acid products (e.g., doublestranded RNAs or dsRNA) generated during viral genome replication [1]. To evad...
متن کاملThe exonuclease activity of Lassa virus nucleoprotein is involved in 2 APC - mediated NK cell responses
23 24 Lassa virus is an Old World Arenavirus which causes for Lassa hemorrhagic fever in humans 25 mostly in West Africa. Lassa fever is an important public health problem and a safe and effective 26 vaccine is urgently needed. The infection causes immunosuppression, probably due to the 27 absence of activation of antigen-presenting cells (dendritic cells and macrophages), and in low 28 type I ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012